Воскресенье, 19.05.2024, 7.05.49
Приветствую Вас Гость | RSS

Мой сайт

Категории раздела
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Форма входа

Каталог статей

Главная » Статьи » Мои статьи

огненные шары.
Введение.
В представленной работе будет идти речь об одном из самых интересных, с точки зрения физики, явлений природы – шаровой молнии. Шаровой молнией принято называть светящиеся образования, по форме напоминающие шар. Проблема данного исследования носит актуальный характер в современных условиях. Об этом свидетельствует частое изучение учёными этого загадочного, завораживающего и, возможно, страшного объекта. Несмотря на то, что современная научная деятельность человечества совершается с огромнейшим прогрессом, шаровая молния всё ещё является очень мало изученным объектом. Для совершенного состояния в науке характерен переход к глобальному изучению шаровой молнии и глубокого познания факторов, затрудняющих изучение шаровой молнии.
Актуальность моей работы обусловлен, с одной стороны, большим интересом учёных к данной теме в современной науке, с другой стороны, её недостаточной разработанностью. Ведь этот малоизученный объект привлекает новыми возможными открытиями, в этой сфере. Результаты моего исследования могут быть использованы на уроках ОЬЖ и физики, и также в качестве дополнительной литературы, для людей, интересующихся природой и историей изучения шаровой молнии.
Объектом данного исследования является изучение и анализ природы шаровой молнии и общих сведений о ней.
Предметом этого исследования является электрическое явление.
Цель моего исследования - изучение темы «Шаровая молния», изучение и выявление мер безопасности при встрече с шаровой молнией и объяснение затруднений исследования шаровой молнии.
Для достижения цели были поставлены следующие задачи:
1.Изучит и проанализировать историю изучения шаровой молнии.
2.Изучит и выявить факторы, затрудняющие изучение шаровой молнии.
3.Изучит и проанализировать общие сведения о шаровой молнии.
5.Узнать, изучить и выявить меры безопасности при встрече с шаровой молнией.
6.Сделать выводы о проделанном исследовании.
История изучения шаровой молнии.
Шаровую молнию, по сравнению с другими природными явлениями, люди очень поздно стали изучать. И она сейчас остаётся малоизвестным объектом.
В первой половине 19-го века французский физик Д. Араго собрал сведения о 30-и случаях наблюдение шаровой молнии. (Приложение 1). В учебнике физики XVIII века шаровые молнии называются: «огненные шары, по воздуху носящиеся и часто с великим громом разрывающиеся». Природа этих шаров именовалась - «огненная материя молнии подобная». Несмотря на редкое появление шаровой молнии, встречаются случаи столкновения с ними известных ученых. Так, например, 26 июля 1752 г в Физической лаборатории Петербургской Академии наук профессор Г. В. Рихман проводил эксперимент с изобретенным им устройством по изучению атмосферного электрического поля. Металлический стержень, выходящий на крышу, был соединен с измерительным устройством Рихмана. И вот, когда в стержень попала молния, от устройства вдруг отделился голубой светящийся шар величиной с кулак. Он ударил Рихмана прямо в лоб. Раздался треск и Рихман упал — к великому сожалению, он был мгновенно убит.
Один из исследователей шаровой молнии сказал: «Существует немало явлений, еще непонятых человеком, но мало найдется таких, когда наблюдение только затрудняет объяснение». Его слова в точности описывают реальную ситуацию. Ведь все изучаемые человеком тела, после наблюдения за ними становятся более понятными, но с шаровой молнией происходит всё наоборот – после наблюдения за ней человек всё больше удивляется, познавая новые тонкости природы шаровой молнии, люди ужасаются её разнообразием форм и цветов, возможностям, временем «жизни».
Очень долгое время все силы учёных, направленные на изучение шаровой молнии «выливались» исключительно в гипотезы. Многие гипотезы рассматривают шаровую молнию как плазму, некоторые гипотезы, предполагают шаровую молнию особым химическим соединением, их выдвигали Я.И. Френкель в 1940 году и затем на новом уровне Б.М. Смирнов в 1977 году. В этих гипотезах исследователи стремятся обосновать принципиальную возможность сосредоточения в объеме характерной для молнии достаточно энергии. Эти гипотезы фактически не объясняют свойства шаровой молнии. Взамен этих гипотез И.П. Стаханов предлагает кластерную гипотезу. Но так как автор сам признается, что данная гипотеза создает больше вопросов, чем ответов, нет необходимости в ее анализе.
В декабре 1975 года журналом «Наука и жизнь» проводились огромные исследования., которые продолжались до 1977 года. Редакция газеты задала вопрос читателям о наблюдении шаровой молнии, на что им было прислано 1400 писем очевидцев шаровой молнии. На основе этих рассказов, Стаханов стал делать выводы о шаровой молнии. Вот как он сам отзывается о проделанной работе: «материалы опроса населения еще раз подтвердили, что реальность ШМ не вызывает сомнений, как и то, что вопрос о ее происхождении продолжает оставаться открытым». И вот какой вывод из изучения многочисленных описаний встреч делает известный уфолог Максим Карпенко: "Рассказы очевидцев о встречах с шаровыми молниями, как кусочки мозаики, собранные вместе, создают образ удивительного существа с непостижимым разумом и логикой - этакого сгустка плазмы, образовавшегося в месте локальной концентрации энергии и вобравшего в себя часть этой энергии, самоорганизовавшегося и эволюционировавшего к осознанию окружающего мира и себя в нем".
Я считаю, что этот метод не очень эффективен. Читая эти рассказы людей, мной было замечено, что люди не очень точно знали, что наблюдали. Например, было почти одинаковое описание происходившего, но одни это называли шаровой молнией, а другие - неопознанным летающим объектом. Но, все же, с помощью этого исследования учёные могли точнее узнать «повадки», размер, цвет и интенсивность свечения. Что немало важно. Также в связи с этим исследованием, было выявлено, что шаровая молния может появляться и в ясную погоду.
Существует масса разрозненных теорий о происхождении, «жизни» и природе шаровых молний. Сейчас знания о шаровой молнии немного продвинулись. Время от времени в лабораторных условиях получается создать объекты, по виду и свойствам похожие на шаровые молнии — плазмоиды. Тем не менее, стройной картины и логичного объяснения этому явлению никто предоставить так и не смог. Наиболее известной и разработанной раньше остальных является теория академика П. Л. Капицы, которая объясняет появление шаровой молнии и ее некоторые особенности возникновением коротковолновых электромагнитных колебаний в пространстве между грозовыми тучами и земной поверхностью. Однако Капице так и не удалось объяснить природу тех самых коротковолновых колебаний. К тому же, как было замечено выше, что шаровые молнии не обязательно сопровождают обычные молнии и могут появляться в ясную погоду. Тем не менее, большинство других теорий основаны на выводах академика Капицы.
Отличные от теории Капицы гипотеза была создана Б. М. Смирновым, утверждающим, что ядро шаровой молнии — это ячеистая структура, обладающая прочным каркасом при малом весе, причем каркас создан из плазменных нитей.
Д. Тернер объясняет природу шаровых молний термохимическими эффектами, протекающими в насыщенном водяном паре при наличии достаточно сильного электрического поля.
Однако самой интересной считается теория новозеландских химиков Д. Абрахамсона и Д. Динниса. Они выяснили, что при ударе молнии в почву, содержащую силикаты и органический углерод, образуется клубок волокон кремния и карбида кремния. Эти волокна постепенно окисляются и начинают светиться. Так рождается «огненный» шар, разогретый до 1200—1400 °С, который медленно тает. Но если температура молнии зашкаливает, то она взрывается. Тем не менее, и эта стройная теория не подтверждает все случаи возникновения молний.
Учёные пытаются не только изучит шаровую молнию, но и воспроизвести её в лабораторных условиях. Правда, пока это только попытки. Первыми такими попытками можно считать опыты Теслы в конце XIX века. В своей краткой заметке он сообщает, что, при определённых условиях, зажигая газовый разряд, он, после выключения напряжения, наблюдал сферический светящийся разряд диаметром 2-6 см. Однако Тесла не сообщал подробности своего эксперимента, так что его воспроизведение крайне затруднительно.
Первые детальные исследования светящегося безэлектродного разряда были проведены только в 1942 году советским электротехником Бабатом: ему удалось на несколько секунд получить сферический газовый разряд внутри камеры с низким давлением.
Затем были опыты Капицы: он смог получить сферический газовый разряд при атмосферном давлении в гелиевой среде. Добавки различных органических соединений меняли яркость и цвет свечения.
А недавно учёные получили некие плазмоиды со временем жизни до 1 секунды, похожие на «природную» шаровую молнию. Впрочем, для окончательных выводов требуются независимые проверки других исследовательских групп.
Шаровая молния- загадка для ученых. Вот уже около двухсот лет ученые всего мира пытаются раскрыть тайны шаровой молнии. Как она возникает? Каков ее состав? Ведь шаровую молнию руками не возьмешь, внутрь не заглянешь. На эти и многие-многие другие вопросы ученые настойчиво ищут ответа. Ищут, но пока не находят!
Общие сведения о шаровой молнии.
Температура.
Очевидцы шаровой молнии, наблюдавшие их на близком расстоянии, сообщали, что большого тепла от молнии не излучали. Но чаще всего шаровые молнии встречаются очень высоких температур, от 100 и до 1000 градусов. Этому свойству пока нет точного объяснения.
По предлагаемой версии в сформировавшейся шаровой молнии частицы плазмы совершают в основном упорядоченные движения, при этом их кинетическая энергия может быть весьма значительной, но о температуре плазмы что-либо определенного сказать нельзя. О большой температуре шаровой молнии можно говорить в начальной стадии ее образования еще при беспорядочном хаотическом распределении скоростей и большом числе столкновений частиц плазмы. Но наибольшая температура плазмы очевидно проявляется в момент электрического пробоя плазменного конденсатора и последующего мощного взрыва шаровой молнии, поскольку энергия электрического разряда, суммируясь с кинетической энергией движущейся плазмы, превращают упорядоченные движения ее частиц в хаотические с бесчисленными взаимными столкновениями; тем более, если шаровая молния образовалась от мощного разряда линейной молнии.
Известно, что в атмосфере содержится небольшой процент тяжелого водорода дейтерия. В атмосфере земли также имеются замедленные мюоны (мю-мезоны) обоих зарядов. «На уровне моря мюоны образуют основную компоненту (≈80%) всех частиц космического излучения». Возможно, и в плазме шаровой молнии содержатся в таких же долях и дейтроны и мюоны. Отметим, что отрицательные мюоны могут образовывать с протонами и дейтронами мюонные атомы (мю-мезоатомы), либо могут быть захвачены этими же протонами и дейтронами. Вновь возникшие образования – нейтральны, как нейтроны. При катализном участии отрицательных мюонов в ядерных реакциях слияния ядер изотопов водорода происходят в нормальных земных условиях, то есть не требуется сверхвысоких температур для сталкивания реагирующих ядер. Следовательно, можно предположить, что иногда в шаровых молниях случаются ядерные реакции, то есть реализуется некоторое количество актов слияния протонно-дейтронных или дейтронно-дейтронных частиц в ядра гелия с выделением соответствующей энергии, которая и производит те самые необъяснимые большие разрушения.
Цвет.
В цвете шаровые молнии очень разнообразны. Общий анализ рассказов очевидцев шаровых молний показал, что самые распространённые цвета – это от жёлтого до оранжево-красного. Затем идут светлые цвета – белый и голубой, реже – зелёный. Очень редкими явлениями являются чёрные и прозрачные (видна линза). Также были замечены пятнистые шаровые молнии и молнии, которые меняют цвет.
Но надо помнить, что человеку известны цвета только тех молний, которые он видел. А кто знает? Возможно, это только начало списка цветов шаровой молнии…

Размер.
Самым распространенным является диаметр от 10 до 20 сантиметров. Реже встречаются экземпляры от 3 до 10 и от 20 до 35. Также встречаются шаровые молнии и с диаметром более метра, но это является большой редкостью.

Интенсивность свечения
Самая распространённая интенсивность свечения шаровой молнии сравнивается со 100 ватной лампочкой. Но также встречаются и более яркие, и более тусклые шаровые молнии. К сожаления, о интенсивности свечения при взрыве, которым часто заканчивается «жизнь» шаровой молнии, ничего не известно. По предположениям – это яркая вспышка.

Скорость передвижения.
Самая распространённая скорость шаровой молнии это от 2 до 10 м/с. То есть, шаровая молния может догнать бегущего человека. Очень часто шаровые молнии летя, кружатся.

Поведение.
Шаровая молния может двигаться по весьма причудливой траектории. Она подвержена разнообразным воздействиям, начиная от земного притяжения и заканчивая электромагнитным полем. Вот какое будет преобладать, так она и полетит. Вместе с тем в ее движении обнаруживается определенные закономерности. Например, шаровая молния ,летя, повторяет рельеф местности. Молния, как правило, обходит, огибает проводящие ток объекты и, в частности, людей. Молния обнаруживает явное “желание” проникать внутрь помещений. Вызывает удивление способность шаровой молнии проникать в помещение сквозь щели и отверстия, размеры которых много меньше размеров самой молнии. Так, молния диаметром 40 см может пройти сквозь отверстие диаметром всего в несколько миллиметров. Проходя сквозь малое отверстие, молния очень сильно деформируется, ее вещество как бы переливается через отверстие. Еще более удивительна способность молнии после прохождения сквозь отверстие восстанавливать свою шаровую форму. Эти свойства шаровой молнии пока учёным разгадать не удалось. Но есть и такое свойство поведения шаровой молнии, которое учёные познали. Это свойство – следовать за бегущим человеком. Многие люди, которые встречались с шаровой молнией, пытались от неё убежать, но она следовала за ними, после чего, люди одушевляли огненный шар. Учёные с лёгкостью объяснили это. Просто бегущий человек создаёт поток воздуха, который «тянет» шаровую молнию за собой.

Условия образования шаровой молнии.
Появление шаровой молнии, как правило, связано с грозовой деятельностью протекающей в атмосфере, поэтому прежде чем пытаться понять ее внутреннее строение, необходимо представить те внешние условия, в которых происходит ее образование и существование.
Рассмотрим, каким образом происходит образование обычной молнии, и какие электрические процессы сопутствуют этим явлениям. В результате трения падающих капель воды о воздух происходит их электризация, величина которой определяется относительной скоростью движения в воздухе и энергией связи внешних электронов в атомах составляющих молекулы воды и воздуха. Знак заряда обусловлен тем, какие атомы, воды или встречного потока воздуха, легче отдают свои валентные электроны. В данном случае это будут капли воды, в состав которых входит водород относящийся к группе металлов.
Потеря электронов каплями воды будет происходить при их ускоренном движении относительно воздуха, так как положительный заряд, который образуется на каплях будет притягивать обратно электроны из окружающей среды, таким образом, при постоянной скорости устанавливается равновесие и заряд капли изменяться не будет.
Процесс ускоренного движения происходит в пределах области тучи, когда идет рост массы капли, за счет ее движения в среде насыщенной водяным паром. Ускорение при этом обуславливается за счет ускорения свободного падения минус ускорение, создаваемое за счет присоединения частиц пара и сопротивлением воздуха. За пределами тучи ускорение движения капли происходит под действием сил гравитации и сопротивления воздуха. По мере приближения к земле оно будет отрицательным, так как возрастает плотность воздуха, а за счет испарения уменьшается вес капли.
В результате сложного движения капли, ее заряд будет изменяться в процессе всего полета. При движении в верхней и средней области облака, когда капля испытывает положительное ускорение, а масса ее возрастает, она, теряя электроны, приобретает положительный заряд, в то время как окружающее пространство накапливает отрицательный заряд. При выходе из облака, когда ускорение становится отрицательным, а капля, на которой сосредоточен положительный заряд, испаряется, она теряет часть своего заряда. Но чем больший положительный заряд будет иметь окружающий воздух, в результате своего взаимодействия с потоком предыдущих капель, тем меньший положительный заряд будет терять капля. При падении на землю накопленные каплей положительные заряды заряжают последнюю.
Таким образом, при прохождении дождя или снега в области облака накапливается избыток электронов, т.е. отрицательный заряд. На поверхности и над поверхностью земли будет иметь место недостаток электронов, что соответствует положительному заряду. При этом над поверхностью земли уровень положительной ионизации воздуха, в основном, определяется температурным режимом и влажностью, так как от них зависит скорость испарения падающих капель. Положительно заряженная масса воздуха, расположенная над поверхностью земли, будет дрейфовать под действием электрического поля между облаком и землей вверх, создавая восходящие потоки. Кроме этого одноименно заряженные молекулы воздуха будут отталкиваться друг от друга с некоторой силой, которая в сумме с барометрическим давлением, существующем в положительно заряженном воздухе, будет равна давлению незаряженной воздушной массы. Таким образом, образуется область пониженной плотности воздушной массы, при неизменном давлении во всем пространстве, которая будет подниматься вверх в среде атмосферы с большей плотностью за счет силы Архимеда. (Приложение 2).
С другой стороны на отрицательно заряженную часть облака, будет действовать сила притяжения со стороны положительно заряженной массы воздуха и земли, направленная вниз, сила Архимеда направленная вверх, а также сила направленная вверх за счет подъема положительно заряженной массы воздуха. В результате часть облака будет выноситься в верхние слои атмосферы, где в зависимости от высоты будет иметь место отрицательная температура, что может привести к образованию града.
Облако и восходящий поток воздуха при встречном движении образуют область нейтрализации зарядов. В области нейтрализации зарядов возникнет повышенное давление. Растекание нейтрально заряженного воздуха порождает турбулентность движущихся потоков.
Между разноименно заряженными ионами встречно-двигающихся потоков будет находиться своего рода изолятор из нейтрального газа, который все время пополняется за счет нейтрализации положительных и отрицательных ионов при их рекомбинации. За счет турбулентности движения потоков направление движения части массы воздуха и капель воды в туче совпадает в области, где происходит нейтрализация ионов и воздух «неподвижен», а ниже этой области направлен навстречу падающей капле. В результате такого движения капля, попадая в область «неподвижного» воздуха, будет отдавать этой области свои электроны, заряжая ее за счет положительного ускорения относительно окружающего воздуха. Следует учитывать, что капля в начале движения находилась в области с избытком электронов и, отдавая часть своих электронов, осталась отрицательно заряженной. При дальнейшем движении капли в области с положительными ионами, движущимися навстречу, происходит дальнейшая потеря электронов с ее стороны. В результате отрицательные заряды, накапливаемые в верхней и средней частях облака, будут перемещаться к границе раздела между положительно и отрицательно заряженными областями атмосферы. Сама граница раздела, состоящая из нейтрального газа также будет опускаться к земле.
По мере накопления зарядов на земле и в облаке возрастает напряженность электрического поля, а заряды будут сосредотачиваться на обращенных друг к другу поверхностях. Известно, что наибольшая напряженность поля будет на выступающих местах: молниеотводы, деревья, высотные сооружения. Наступает электрический пробой, образуется канал молнии и происходит нейтрализация зарядов накопленных в облаке и положительно заряженной массе воздуха. Пробой наступает не «в землю», а «в положительно заряженную область» воздуха, которая поднимается от земли и находится значительно ближе чем молниеотводы и высотные сооружения. Пробивается промежуток состоящий из «нейтрального» воздуха, который расположен между разноименными зарядами, а для этого не нужна разность потенциалов в миллиарды вольт, которая необходима для пробоя промежутков измеряемых километрами.
Явление пробоя примечательно тем, что плотность отрицательных зарядов изолирующего слоя из «нейтрального» воздуха с одной стороны, значительно превышает плотность положительных с другой, поэтому электроны, попадают при пробое в область с положительными ионами и перезаряжают последние. В результате отталкивания между отрицательными ионами образуется зона пониженного давления. Она обладает высокой электропроводностью и поэтому заполняется свободными электронами. Под действием электрического поля к этой зоне начинают перемещаться положительные ионы воздуха из окружающего пространства. Попадая на границу раздела положительно заряженные ионы частично рекомбинируют, а при дальнейшем перемещении к центру, под действием разницы давлений, перезаряжаются и выталкиваются электрическим полем. В процессе нейтрализации ионов образуется плазма, которая экранирует поле электронов и таким образом уменьшает взаимодействие электронов расположенных в зоне разряжения с окружающими ее положительными зарядами (радиус Дебая). Вокруг ствола молнии образуется достаточное для экранирования «количество» плазмы, препятствуя таким образом его разрушению. Образующаяся таким образом голова ствола молнии, к которой начинают перемещаться положительно заряженные ионы воздуха из окружающего пространства, оказывается слабо экранированной и электроны, стекая к ней, будут стремится к области с большим положительным потенциалом. Перемещение головы ствола молнии будет происходить к ближайшей положительно заряженной области. Последние распределены в пространстве случайно, поэтому перемещение головы выглядит зигзагообразным. В процессе нейтрализации ионы молекул воздуха будут подвергаться действию повышенного давления возникающему за счет встречного перемещения отрицательных и положительных ионов, что в свою очередь будет препятствовать их перемещению, а, следовательно и разрушению канала молнии.
Об устойчивости существования канала молнии говорит тот факт, что у автора этой гипотезы имеются записи регистрации разрядов под Санкт-Петербургом, длительность которых достигала 7 секунд и это были не единичные явления.
Таким образом, канал молнии в разрезе можно представить моделью, представленной на рисунке. Она являет собой своего рода «вакуумный» проводник, частично изолированный от внешнего пространства слоем ионизированного воздуха под высоким давлением, а также плазмой которая экранирует электрическое поле. При разрушении этого проводника происходит взрыв – заполнение разреженного пространства и разрушение оболочки канала молнии, что мы и слышим как гром. В конечном итоге перемещение головы молнии заканчивается там, где окажется сосредоточенным ближайший наибольший положительный заряд, который в состоянии нейтрализовать электроны поступающие по каналу молнии. Таким образом, происходит образование канала молнии и разряд накопленного электрического заряда через этот канал. (Приложение 3).
В результате разряда, заряд земли и облака может значительно уменьшится, однако заряд ионов воздуха практически не меняется. Более того, если учесть, что ток, который протекает по каналу молнии, создает значительные магнитные поля, а сам канал обладает большой протяженностью, следовательно и индуктивностью, то возможно такое перераспределение, при котором заряд участка земли станет отрицательным, а облака положительным. Ионизированный воздух, который раньше отталкивался от земли, теперь будет к ней притягиваться. В результате положительно заряженное облако воздуха под действие электрических сил будет прижиматься к земле. Таким образом, образуется область, в которой достаточно долгое время существуют два противоположных связанных заряда – один из них сосредоточен в ионизированном воздухе, а другой в земле.
В этом случае разряд молнии будет происходить между отрицательно и положительно заряженными областями. При этом поток электронов будет двигаться вниз до тех пор, пока отрицательный заряд земли не станет его отталкивать. Таким образом поток электронов не доходит до земли, в которой произошло бы его растекание, а сосредотачивается в области положительно ионизированного воздуха, нейтральные молекулы которого являются изолятором. В данном случае речь идет об ионизированном воздухе. Та часть ионов воздуха, которая соприкасается с отрицательно заряженной частью облака рекомбинирует и становясь нейтральными. Таким образом, получается, что в пространстве существуют две области разноименных зарядов изолированных друг от друга. Такая изоляция не является стабильной. (Приложение 4).
В области с одноименно заряженными зарядами возникает разряженное пространство за счет отталкивания. В то же время на границе, где происходит нейтрализация положительно и отрицательно заряженных ионов будет присутствовать область повышенного давления, за счет их притяжения. Наличие области повышенного давления, в которой в основном находятся нейтральные молекулы, значительно уменьшает скорость перемещения ионов в этой области, а также увеличивает напряжение пробоя, которое определяется для газов способностью организации каналов. При рекомбинации будет происходить выделение энергии, в результате чего образуется плазма, которая в значительной степени экранирует электрическое поле, что так же ограничивает скорость встречного перемещения разноименных ионов воздуха. Эти процессы, в конечном счете, определяют время устойчивого существования структуры зарядов, которая называется шаровой молнией. В положительно ионизированную область пространства отрицательные заряды могут попадать не только в результате разряда в эту область новой молнии, они могут поступить туда по проводящим предметам попавшими хотя бы частично в эту область.
В литературе неоднократно описывалось, что шаровые молнии возникают из розеток. В случае с Рихманом, помощником Ломоносова, шаровая молния возникла из разорванного проводника от молниеотвода. Склонность появляться из дымоходов по всей вероятности объясняется тем, что сажа которая там содержится, является проводником, а сами трубы исполняют роль молниеотводов, причем, так как их нижний конец находится в области насыщенной положительными ионами, а не соединен в данном случае с отрицательно заряженной землей, как у молниеотводов, то, несмотря на свою высоту, они явно имеют преимущество перед последними по притягиванию шаровых молний, особенно если учитывать что разрушение отрицательного заряда в земле, за счет падающих положительно зараженных капель, под строениями происходит намного медленнее, например, если стены выполнены из изолирующих материалов (деревянные, сухой кирпич, и т.д.).
На основании вышеизложенного объясним реальное событие. В «Комсомольской правде» промелькнуло сообщение о том, что произошло поражение молнией девушки стоящей недалеко от дерева, в которое угодила молния. При этом пострадала одна туфля и кофточка, все остальное оказалось целым. В данном случае, после удара молнии в дерево, произошел перезаряд земли относительно окружающего воздуха.
Последующий разряд, но теперь уже из земли в положительно заряженный воздух, произошел через девушку. Через ту туфлю, которая лучше проводила электричество. А кофточка, которая обладала изолирующими свойствами и препятствовала перемещению электронов к положительно заряженным ионам воздуха, пострадала, так как не могла выдержать возникшего напряжения. Кроме этого, наибольшая плотность положительных ионов, вероятно, находилась на высоте этой кофточки.
Случаи обратного удара молнии из выступающих над земной поверхностью проводников в окружающую атмосферу с образованием шаровых молний внешне не отличаются от прямых ударов. Этот факт следует учитывать при проектировании и оценке эффективности действия различных устройств грозовой защиты.

Категория: Мои статьи | Добавил: Makc (24.02.2010)
Просмотров: 3143 | Рейтинг: 0.0/0
Всего комментариев: 0
Имя *:
Email *:
Код *:
Поиск

Copyright MyCorp © 2024
Создать бесплатный сайт с uCoz